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A general theory is given for the time evolution of nonlinear stochastic 
variables a(t) = {a~(t)} whose statistical distribution is changing due to the 
self-organization of "macroscopic" order. The dynamics of a(t) is con- 
veniently expressed by self-consistent equations for the ensemble average 
x(t) = (a(t)), the supersystem, and for the deviations ~(t) = a(t) - x(t), 
the subsystem; the systems are connected to each other by feedback loops 
in their dynamics. The time dependence of the variance and the correlation 
function of ~(t) are studied in terms of relaxation toward local equilibrium 
under x(t) and dynamical coupling with x(t). A special example shows that 
the stochastic motions of subsystems are pulled together by the motion of 
the supersystem through feedback loops, and that this pull-together 
phenomenon occurs when symmetry-breaking instability exists in nonlinear 
systems. 

KEY WORDS: Nonlinear Brownian motion; self-organization; feedback 
loop; pull-together phenomenon; transient state; fluctuation renormaiiza- 
tion. 

1. I N T R O D U C T I O N  

The existence o f  hierarchical  chain structures is one of  the most  impor tan t  

features of  nature and is observed most  clearly in biological  systems. Such 
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structures arise with respect to amino acids and low molecular weight 
molecules, proteins and other high polymers, aggregates of high polymers in 
the form of organelles, cells, tissues, organs, individuals, families or groups, 
troops or societies, communities, ecosystems, and so on. Fundamental 
properties common to hierarchical biological systems higher than biopolymers 
are that they are generally thermodynamically open systems and that feedback 
loops (1,2~ exist between the behavior of the inferior systems (the subsystems) 
and that of the superior system (the supersystem) composed of the sub- 
systems. The evolution of the supersystem is determined by those of the sub- 
systems in a statistical way and, at the same time, the feedback loops put the 
subsystems under the control of the supersystem. Such feedback loops give 
the biological laws characteristic of life phenomena. In fact, this mutual 
control of the behavior of systems gives a self-regulation mechanism to the 
dynamics of the hierarchical system against external forces and boundary 
conditions. The feedback loop in open systems is responsible for the sym- 
metry-breaking instability in the dynamics of the supersystem. (1,2~ 

A typical example of feedback regulation is observed between the 
behavior of a human society and that of its members. The society evolves 
because of its inherent motive force under the control of public opinion and 
of "macroscopic" boundary conditions, including external forces. On the 
other side, the behavior and opinions of the members a~(t) are determined by 
their inherent motive force G~(ad, characteristic of individuals i = 1, 2,..., N, 
the fluctuating force f~(t) changing the behavior of the ith member in a 
random way, and the direct and indirect interactions {F~j} among the mem- 
bers. The indirect interaction mediated by the society is related to the feed- 
back regulation of public opinion. Generally, the society evolves with space 
and time scales much larger than those of its members. The collective be- 
havior in a society has been studied by Weidlich, (a~ who regards a society as 
an ensemble of Ising spins. The polarization of public opinion is compared 
with the appearance of a macroscopic magnetization in the system, which is 
treated in terms of a Fokker-Planck equation. 

More generally, biological systems with feedback loops may be assumed 
to be kinds of nonlinear and open systems where the statistical distribution 
and the correlation of variables {at(t)} belonging to the subsystems are being 
changed in a cooperative or autocatalytic manner due to the evolution of the 
supersystem. Therefore, the dynamics of subsystems are controlled by factors 
affecting the dynamics of the supersystem, such as external forces and bound- 
ary conditions to the supersystem. 

In the present paper the effect of the evolution of the supersystem on the 
dynamics of the subsystems will be studied in terms of the moments and the 
time-correlation function of the stochastic variables describing the behavior 
of the subsystems. These quantities can be obtained only when the statistical 
distribution of the variables is known reasonably well. On the other hand, 
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stochastic variables characterizing the dynamics of nonlinear systems having 
instability are generally quite different from Gaussian random processes and 
difficult to obtain in an explicit form. Consequently, the following approxima- 
tion will be used throughout the present paper. 

A stochastic variable a(t) may be decomposed into a deterministic part 
y( t )  and a fluctuating part z(t),  for instance, according to Mori's prescrip- 
tion. (4~ The distribution function for z(t)  will be obtained by solving a proper 
Fokker-Planck equation. For the sake of convenience, a(t) will be, however, 
decomposed here into x( t )  = y( t)  + <z(t)) and ~(t) = z(t)  - ( z ( t ) ) ,  where 
< ) denotes the statistical average. It may be expected that se(t) evolves much 
more rapidly than x(t)  in a number of practical examples. A Gaussian random 
process may be assumed in such cases for ~:(t) as a first-order approximation, 
though it is not always applicable to z(t).  

General theories have been given by van Kampen, (5~ Kubo eta/. ,  (6) and 
Mori ~'7~ for the evolution of macroscopic variables in a nonlinear system. 
On the other hand, we are interested here in subsystems located in non- 
equivalent positions in a supersystem. Cells in a tissue are typical examples of 
such subsystems. Furthermore, proteins and other high polymers correspond 
to subsystems in organelles. Generally speaking, the time dependence of 
microscopic variables {a~(t)} must be treated in a number of biological 
problems, which requires a formulation different from the above theories for 
macroscopic variables. In Section 2, we introduce the fundamental equations 
used in this paper and discuss the choice of the order parameter characterizing 
the order in the dynamics of the system. The equation of the order parameter 
obtained in Section 2 contains moments characteristic of the microscopic 
fluctuations. The time evolution of moments is discussed in Section 3. Section 
4 is devoted to the calculations of the time correlation function and of the 
kinetic coefficient of the fluctuations for a given value of the order parameter. 
An application of our theory is given in Section 5, where a model system 
exhibiting the order-disorder-like transition for certain parameters is analyzed. 
General considerations are given in Section 6. 

2. F U N D A M E N T A L  E Q U A T I O N S  

Let us study the time evolution of a nonlinear many-component system 
which, because of instability, is not always in a steady state. We shall discuss 
the case where the behavior of the components can be represented by stochas- 
tic variables a(t) - {as(t): i = 1, 2,..., N}, properties of which will be given 
below. It is assumed that (1) the components are of the same kind and are 
essentially "microscopic," and (2) the time dependence of the variables a(t) is 
given by a set of nonlinear stochastic equations, 

da(t)/dt = - T a ( t )  + G(a(t)) + F(a(t)) + f ( t )  - h(a) + f ( t )  (1) 
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where y a n d f ( t )  are, respectively, the friction constant giving the dissipation 
of a(t) and the fluctuating force acting on a(t) due to the interaction of the 
system with external surroundings which are in a steady state; G(a(t)) is the 
nonlinear force inherent in the system, meaning that the boundary conditions 
for the system as a nonlinear open system may be included here, and that the 
interaction force F(a) is caused by the interactions among the stochastic 
variables in the system. The fluctuating force will be assumed to be a white 
Gaussian process, i.e., 

.s = O, f ( t ) f j*( t ' )  = 2D 8~j 3(t - t ')  (2) 

where the asterisk stands for the complex conjugate and the bar over the 
variables stands for the average with respect to the ensemble of the random 
variables f(t.); D is the "diffusion" constant, and 8~j and 8(t) denote the 
Kronecker's &symbol and the Dirac &function, respectively. 

Without loss of  generality it may be assumed that time-independent 
"macroscopic"  boundary conditions for the system are set at the initial time 
t = 0. Note that ~(t) still depends on the initial condition 6(0), which cannot 
be specified completely by only the macroscopic conditions, because of  non- 
linearity. The average of  6(t) with respect to the initial condition of  the 
ensemble of the system will be called the ensemble average (a(t)) of the 
variables a(t) and denoted by x(t). The ensemble average x(t), the set of 
{xM) }, may depend on the subsystems because the boundary conditions 
exerted on the different subsystems may not be the same. 

Now, the Variable a(t) will be split into two parts, 

a(t) = x(t) + ~(t) (3) 

where ~c(t) is the fluctuating part, whose ensemble average vanishes. The 
variable a(t) may be chosen as x ( t ) =  0 in the equilibrium state which 
appears when G(a) = 0. An order parameter representing the order for the 
dynamics of  the variables may be chosen as 

N 

X(t) = ( l /N)  ~ x,(t) = ((a(t))~ (4) 
t = 1  

provided that the system is composed of  subsystems which are statistically 
equivalent. In more general cases x(t) may be regarded as the order param- 
eter. The fluctuating part ~:(t) varies in time due to the interactions of the 
subsystem with external surroundings and to interactions with other sub- 
systems in the same system. Here a third assumption will be added: The time 
scale r e for the change of the fluctuating part ~:(t) is much smaller than that 
rx for the systematic part x(t) or the order parameter X(t). This leads to the 
result that the statistical distribution of  the variable ~(t) is close to and 
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differs only slightly from that for local equilibrium for a given value of x(t). 
The dependence of ~:(t) = ~(t; x(t)) on the evolution of x(t) will be discussed 
later. 

The third assumption limits the applicability of the present theory to 
phenomena which have stability with respect to a fluctuation f(t) .  For in- 
stance, it cannot be used for the discussion of  critical phenomena character- 
ized by the critical slowing down of the fluctuation. In spite of this limitation, 
a large domain remains for the application of the present treatment, in 
particular, in biological problems. 

Taking the ensemble average of Eq. (1), one finds 

dx(t)/dt = @(a(t))) (5) 

where the function h(a(t)) may be expanded in terms of ~(t) around h(x(t)), 

where 

1 M~(t) V"h(x(t)) @(a(t))) = h(x(t)) + ~ (6) 

M~(t) = (~"(t))  (7) 

is the nth moment of ~. Equations (5)-(7) are written symbolically in such a 
way as to avoid complexities in the rigorous use of the matrix notation and 
similar expressions will be used hereafter. Subtracting (5) from (1), one 
obtains 

d((t) 
dt = h(a) - @(a)) + f ( t )  

1 
= ~ ~ {~:"(t) - M~(t)} V"h(x(t)) + f ( t )  

n 

- Ah(~:(t); x(t)) + f ( t )  (8) 

Equations (5) and (8) are different from those in the theories for macro- 
scopic variables; the solution of the deterministic equation, which is inde- 
pendent of the stochastic equation, is chosen as the order parameter in the 
latter theories, while the order parameter depends explicitly on the stochastic 
behavior of the subsystems in the present theory. Namely, the equation of 
motion for x(t) depends on the moments M,(t) and, at the same time, Eq. (8) 
depends on x(t). Equation (6) indicates that such a feedback loop exists 
between x(t) and ~:(t) so far as nonlinearity is present in the system. 

The equation of motion for the moment Ms(t) which is derived from 
Eq. (8) contains M~+I, M~+2, and other higher moments. However, the 
moments higher than M2 can be expressed in terms of  M2 because of  the third 



478 K. Kometani and H. Shimizu 

assumption on the variable a(t), namely the Gaussian distribution of the 
fluctuation ~; one finds 

Mn(t) = {~" 3" 5 "" (n - 1)[M2(t)] ~/2 for even n 
(9) 

for odd n 

Thus, a closed expression is obtained with respect to M2(t), the variance. 
The time evolution of ~(t; x(t)) may be classified as follows by utilizing 

the relation r~ << ~'x: (1) f(t)  relaxes toward the local equilibrium for a given 
value of x(t), and (2) there is dynamical coupling between f(t)  and x(t) due 
to the evolution of x(t). Generally speaking, the dynamical coupling may be 
characterized by the time scale ~-~ and the relaxation by ~-e. The description 
of the time evolution of the moment  becomes complex when the relaxation is 
included explicitly in the treatment, because the relaxation process is com- 
posed of a number o f " n o r m a l  modes"  and, moreover,  there are interferences 
between the dynamical coupling process and these normal modes. 

3. THE T I M E  DEPENDENCE OF THE V A R I A N C E  

Let us study the evolution of the system in the time interval from t to 
t + s with the choice of  the time scale as ~-r << s << ~-x, which allows us 
to discuss the relaxation process explicitly and to study the dynamical 
coupling by a slight change in the value of x(t). The variance M2 may be 
rewritten as 

M~(t + s) = M~(t + s; x(t + s)) 
~- M2(t + s; x(t)) + Ax(s; t) VxM2(t + s; x(t)) 
~_ M2~ + Ax(s; t) VxM2~ (lO) 

where M2~ =- M2(t + oo; x(t)) and VxM2~ - VxM2(t + oo; x(t)) are 
given in the last equation by utilizing s >> r~ and hereafter the superscript ~ 
on variables indicates that the variables are in local equilibrium for the order 
parameter  fixed at x = x(t). The second term on the rhs of(10) represents the 
dynamical coupling caused by a slight change Ax(s) of x from x = x(t) ;  
Ax(s; t) is obtained from Eqs. (5) and (6). 

The time dependence of the variance in the scale s is given from Eq. (10) 
a s  

O M 2 ( t + s ) = {  ~ } Os ~ x(s; t) VxM2~ (ll) 

The variance M2~ in local equilibrium, which is a steady state value over 
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the time scale s for a given x(t), may be obtained from 

+ ~~ + s ) ~ ~  + s) 

= 0 (12) 

where the second term on the rhs is the complex conjugate (c.c.) of the first 
term, which may be calculated as follows. 

The nonlinear Markov equation 

d~~ + s)/ds = Ah~(~~ + s)) + f ( t  + s) (13) 

may be rewritten in terms of a linear non-Markov one by uti|izing Mori and 
Fujisaka's identity. (a) Let Wt((, s) be the probability distribution function of 

at time t + s for a given x(t). The Fokker-Planck equation corresponding 
to Eq. (13) is 

0 Wt((o, s) _ (Ah~ + O F W~ -= I/~W, (14) 
Os 

By introducing the adjoint operator At of lit such that 

f A(eO)n,wt(eo, )de o = f  A,A(eO) W (eo, )de (is) 

o r  

At = Ah~176 ~T6 + D ~o2 (16) 

Eq. (13) can be rewritten as 

d (o(t + s) = At~r + s) + f ( t  + s) (17) 

The function A(~) in Eq. (15) is an arbitrary function of ~. The formal 
integration of Eq. (17) results in 

~~ + s) = [exp(Ats)]~~ + {exp[At(s - s')]}f(t + s') ds' 

- ~:o~ + s)  + 6 ~  + s )  ( i8)  

The time evolution of the systematic part ~:0(t + s) of ~:(t + s), 

d o 
~r (t + s) = A,~o~ + s) (19) 
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can be transformed into a linear non-Markov equation (9~ 

d f0 ~ ~-j ~o~ + s)  = if~t~o~ + s) - ~bt(s')~o~ + s - s ' )  ds'  + g(t + s) 

where 

and 

i~t  =- (Ah~176163176163176 -1 
g(t  + s) -- {exp[(1 -- Pt)Ats]}(l - Pt)At~~ 

PeA =- ( A ~ ~ 1 7 6 1 7 6  

(20) 

(21) 
(22) 
(23) 

ds - if~t~~ + s) 

f; - ~bt(s')~~ + s - s ' )  ds'  + g(t  + s) + f ( t  + s) (25) 

Multiplying by ~~ + s) on the right of (25) and taking the ensemble 
average, one finds 

s = iaAIf~ + s)l 2) - ~t(s ')(~~ + s - s 'K~  + s ) )  ds'  

+ (g( t  + s)~:~ + s)) + ( f ( t  + s)~~ + s ) )  (26) 

The last term in Eq. (26) does not always vanish. In fact, an explicit calcula- 
tion gives ( f ( t  + s ) f~  + s))  = D, which means that the variance in- 
creases due to the "diffusion" of f~ under the perturbation off( t ) .  The third 
term on the rhs of Eq. (26) may be explicitly calculated as follows. The variable 
fo~ + s) may be split into two parts as 

~o~ + s)  = Ptfo~ + s)  + (1 - P,)fo~ + s)  
---- CF(s)~~ + v(t + s) (27) 

where CF(s) is a time correlation function of ~(t) for a fixed x(t) ,  

Ct~ =_ (r176 + s)'r176176 -1 (28) 

d~~ + s) 

~bt(s) =- (g(t  + s)g(t)*)(l~~ -1 (24) 

The definition of the projection operator Pt is different from that given by 
Mori and Fujisaka in that Pt here is a slowly varying function of time with 
time scale rx and the average is taken with respect to the steady probability 
distribution of ~: under a given value of x(t) .  

Since Eq. (20) is a linear equation in ~:0~ + s), the corresponding 
equation for ~:~ + s) leads to 
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Operating with (1 - Pt) from the left on Eq. (19) and substituting Eq. (27), 
one obtains 

O~(t + s)/~s = (1 - Pt)Ai(Ct~176 + ~(t + s)} (29) 

which is easily integrated as 

~(t + s) = {exp[(1 - Pt)At(s - s')]}(1 - Pt)AtCt~176 ds' 

= Ct~ + s - s') ds' (30) 

From the definition (22) of g(t + s), it is easily seen that 

(g( t  + s)se~ = 0 (31) 

Therefore, by using Eqs. (24), (28), and (30), we find the third term on the rhs 
of Eq. (26) to be 

(g( t  + s)~~ + s)} = (g( t  + s)~7(t + s)*} 

fo = (g( t  + s)g*(t + s - s')}Ct~ ') ds' 

f2 = ~(s ' )(~~176 + s ')}  ds' (32) 

The third assumption on a(t) gives rise to 

(~~176 + s')} = ( (~  + s - s')~~ + s)} (33) 

Hence, the third term on the rhs of (26) cancels the second, reducing Eq. (26) 
to 

( { d  ,~ + s ) ) , ~  + s ) ~  = if2t(l~~ + s),2) + D (34) 

The steady state variance 342 ~ is obtained as the solution of 

i~)tM2 ~ + M2~ * + 2D = 0 (35) 

which is obtained from Eqs. (12) and (34). In (35), i~t is a function of M2 ~ 
and its explicit form depends on h(a). 

The effect of the dynamical coupling with increasing Ixl on the evolution 
of the variance depends on the sign of V,xlM2~ The "microscopic"  
motion of subsystems may be pulled together and reduced by the dynamical 
coupling, provided that V,xiM2~ < 0. 

4. THE TIME CORRELATION FUNCTION 

The normalized time correlation function C(s) may be written as 

C(s) - (~(t  + s)~*(t))(l~(t)12} -1 
~_ C~ + ~Xx(s; t) vxC~ (36) 
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where the first term on the rhs represents the correlation of the fluctuation ~: 
with the order parameter fixed at x( t )  and the second term represents the 
increase or the decrease of the correlation by the dynamical coupling between 
~:(t) and x(t) .  To calculate C~ (25) may be utilized. Multiplying Eq. (25) 
by f~ from the left and then taking the average, one is left with 

f2 dC~ = if~tC~ - ~t(s')C~ - s') as' (37) 

The solution of (37) is found in the form of the Laplace transform as 

C ~  = [z - i a~  + r -~ (38) 

where 

~0 c~ C~ = C~ -zs ds (39) 

The frequency-dependent "kinetic coefficient" F(o0, e.g., the friction co- 
efficient, is obtained as 

F(o 0 = R e [ - i f l t  + Ct(i~)] (40) 

where Re stands for the real part. 
Though the explicit form of the memory function Ct(s) is unknown, its 

approximate form may be calculated as follows in a second-order perturba- 
tion expression. (a'l~ The evolution operator A t may be split into two parts, 
one linear and one nonlinear, as 

where 

and 

At = Ao + A1 (41) 

Ao - {Pt Ah~176 + D ~:o---~ (42) 

0 
A t - {(1 - Pt) Ah~176 ~:o (43) 

If  the nonlinear fluctuation (1 - Pt) Ah~ ~ is small ehough, the memory 
function may be approximated as 

Ct(s) = ({e (1 - vPA~"g(t)}g*(t))([~~ 2) -1 
({e(1 - VpAoSg(t)}g,(t))(] ~:o(t)[2) -1 (44) 

By using the approximation (44) for Ct(s), one is able to express the 
memory function explicitly in terms of  known quantities. For example, if 
Ah~ ~ is expressed as 

Ah~ :~ = -y~r176 + a{~ :~ - 3/2 ~ (45) 
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the random force g is obtained from Eqs. (22) and (45) as 

g(t) = c~{~:~ - M2~ (46) 

Since the linear part of the evolution operator A~ in this case is 

0 02 
A0 = -~,~o ~-~ + D ~o--~ (47) 

a straightforward calculation results in 

(1 - Pt)a0g = - 2c~yg - 2c~yM2 ~ (48) 

Thus the second-order perturbation calculation leads to 

4,,(s) ~- e-='<lgl2><l~~ -~ (49)  

The effect of the dynamical coupling on the correlation function of ~(t) 
with increasing Ix] is seen qualitatively from the sign of VixtC~ As far as 
the present approximation is concerned, the condition of  the self-organization 
of order, the condition of the pull-together of randomness, in the evolution of 
stochastic systems may be represented by the decrease of the randomness and 
the increase of the damping in the fluctuation ~~ around the averaged 
change x(t + s). The former gives a decrease in the variance M2~ and the 
latter a decrease in the correlation function C~ by the dynamical coupling 
with increasing lxL. Hence, the condition for the pull-together is given by 

VlxtM2~ < O, Vt~lC~ < 0 (50) 

. A S P E C I A L  E X A M P L E  

The theory developed above will be applied to a system with 

0 
F~(a) = ~ ~ (aj - aJ, 0 t> 0 

7 
and 

(5]) 

- y a ,  + G~(a) = pa t  - qaf l ,  q >1 0 (52)  

Interactions such as (51) are able to lead to an empirical equation for muscle 
contraction. (11) It is known that muscle contraction is caused by the mutual 
sliding of  myosin a n d  actin filaments, that there are cross-bridges between 
myosin and actin extending from a myosin filament toward actin filaments 
around it, and that the motive force for the sliding arises between the terminal 
part of the cross-bridge and actin in a repeating manner during muscle con- 
traction. Thus, the molecular dynamics at each cross-bridge may be assumed 
to be the subsystem and the sliding motion of  the filaments as the super- 
system. The motive force at the cross-bridge comes from the use of  chemical 
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energy obtained from the hydrolysis of ATP molecule and may be tentatively 
given by (52). Even if no direct interaction exists between cross-bridges, the 
motion of one cross-bridge is affected by all others through the sliding motion 
of the muscular filaments. This sort of interaction may be written as in (51). 

For the sake of simplicity we assume that the system is so homogeneous 
that the order parameter can be chosen as (4). Fundamental equations corre- 
sponding to Eqs. (5) and (8) are obtained as 

d X / d t  = p X  - q X  3 - 3 q X M 2  (53) 

and 

d ( / d t  = ( p  - 3 q X  2 - 0)~ - 3 q X ( ~  c2 - M2) - q~:3 + f (54) 

The evolution of X ( t )  is not only determined by X ( t )  itself but also by ~:(t) 
through the variance M 2 ( t ) .  Linearizing (54) for a fixed value of X ( t ) ,  one 
finds 

d~~  + s )  _ i [ ) t ( o ( t  + s )  
ds  

i; - 4 , t ( s ' )~~ + s -  s ' ) d s '  + g ( t  + s )  + f ( t  + s )  (55) 

where explicit calculations give 

if2 t = p - 3 q X ( t )  2 - 0 - 3qM2O( t )  (56) 
g ( t  + s )  = e C l - P , ) A , s [ - - 3 q X ( t ) { ~ ~  2 -- M2~ 

- q{~:~ 2 - 3 M 2 ~ 1 7 6  (57) 

and 

At = [{p - 3 q X ( t )  2 - O}~~ - 3 q X ( t ) { ~ ~  2 - M2~ 

- q~:~ 3] ~ + D ~:o-----~ (58) 

It should be noted here that the interaction force (51) does not appear 
explicitly in the equation of the order parameter X, Eq. (53). The interaction 
force influences X ( t )  indirectly through the 0 dependence of the variance of  
M2. The steady-state variance corresponding to the order parameter X ( t )  is 
easily obtained from Eqs. (35) and (56) as 

M 2 ~  = {(p - 0 - 3 q X  2) + [(p - 0 - 3 q X 2 )  2 + 12qD] l l z } /6q  (59) 

It is easily seen from (53) that one of the steady states of  the order parameter 
exists at X = O, indicating a disordered state for {a~}, and other steady states 
are given by the relation 

p - 3 q M 2  ~ --  q X o  2 = 0 (60) 
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Substituting (59) into (60) and solving the resulting equation, one obtains 

X0 = +{2p - 0 + [(2p + 0) 2 - 24qD]l /2} lJ2/2"~ (61) 

The stability o f  these steady states is seen from the linear stability analysis: 
The steady state X = 0 is stable for pO < 3qD and it becomes unstable for  
pO > 3qD, where the steady states (61) are stable. The condit ion pO = 3qD 

gives marginal  stability (Fig. 1). 
The memory  function ~bt(s) in (55) may be calculated explicitly by the use 

o f  the second-order  per turbat ion approximat ion (44). The linear part  A0 of  
the evolution operator  A, Eq. (58), is obtained from (42) and (58) as 

Ao [(p 3 q X  2 0)~ ~ ~176 ~o 
92 

. . . .  3qM2 o ] - -  + D - -  (62) 

The approximat ion 

g(t  + s)  = e(l-vP%Sg(t)  (63) 

and the expression (57) for g yield 

= (1 - POA0g 
= 3(p - 3 q X  2 - 0 - 3qM2~ + q X ( ~  ~ - 3Mz~ (64) 

after simple calculations. F rom Eqs. (64) and (56) one obtains 

g(t  + s)  = [exp(3if2,s)]g(t)  

f2 + {exp[3if~t(s - s ' ) ]}3in tqX( t ){exp[(1  - P~)aoS']} 

x {~:~ - 3M2~ ds'  (65) 

0.5 

stable 

Fig. 1. Steady state for X for a system represented by (53) for p = q = D = 1.0. Here 
0c is the critical strength for the appearance of the order, 0c = 3qD/p. A similar figure is 
obtained for X vs. p for fixed q and 0. 
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Similar calculations result in 

{exp[(1 - P t ) A o s ] } { ~ ~  - 3M2~ 
= 3[exp(2if4s) - 1] + [ e x p ( Z i f 2 t s ) ] { ~ ~  - 3M2~ (66) 

The memory function becomes 

~bt(s) = [ e x p ( 3 i ~ t s ) ] ~ t ( O )  - 1 8 i g l t q 2 M 2 ~  2 

yo x e x p [ 3 i f 2 t ( s  - s')] e x p ( 2 i f 2 t s ' )  d s '  (67) 

from Eqs. (65)-(67) and (44). By using (40) and (67), we find the kinetic 
coefficient F(w) for a given value of X ( t )  as 

P(co; X ( t ) )  = R e [ - i g 4  + ~ b t ( 0 )  1 8 i t ) t q 2 M ~ ( t ) 2 X ( t )  2 ] 
ico - 3is t ( i w  - 3ig2t)(ico - 2it)0J (68) 

The variance #/2 ~ and the kinetic coefficient P are independent of X 
when q = 0, i.e., when the system is linear: For 0 > p 

M 2  ~ = D ( O  - p )  (69) 

and 

v = 0 - p ( 7 0 )  

as is easily seen by taking the limit q ---> 0 in (59) and (68). The evolution of 
the order parameter X ( t )  is given in closed form as 

X ( t )  = p X ( t )  (71) 

in which no information on E(t) is contained. 
For q r 0 both the variance M2 ~ and the kinetic coefficient depend on 

o 
M 2 

0.20 

d 

0.15 
i 

L J X 
0 0.5 Xo 

Fig. 2. The  dependence  o f  the variance on  X, Eq. (59), for p = q = D = 1.0 and 
0 = 5.0. X0 is the steady-state value o f  X for given values  o f  p, q, and 0, Xo = 0.707. 
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F(0) 

5 

. . . . . . . . .  I - X 

0 0.5 Xo 
Fig. 3. The dependence of the kinetic coefficient r on X, Eq. (68), for oJ = 0, p = q = 

D = 1.0, and 0 = 5.0. Similar curves are obtained for arbitrary frequencies. 

the order parameter  X, and are shown in Figs. 2 and 3. As is seen from these 
figures, their derivatives with respect to IX I are 

and 

am2~ X)/O[Xl < 0 (72) 

8P(w; X)/SIX[ > 0 for all ~o (73) 

Thus, due to the dynamical coupling, the variance becomes smaller and 
smaller as order develops in the system, while the kinetic coefficient becomes 
larger and larger over the whole frequency region. In other words, the system 
satisfies the condition of pull-together, Eq. (50). The decrease in the variance 
influences the evolution of the order parameter  through a feedback loop, 
namely, the growth rate of X(t), p - 3qM2 ~ in (53), becomes larger as the 
variance becomes smaller. Because of the feedback loop, macroscopic order 
develops more and more in the system as the fluctuation around it is reduced 
more and more by the increasing order parameter. At the same time the 
kinetic coefficient, which becomes larger, pulls back the deviation of a(t) 
f rom X(t)  more rapidly. 

6. D I S C U S S I O N  

A fundamental property common to self-organizing systems is the 
existence of feedback loops between macroscopic and microscopic behaviors 
in the system. The necessary condition for such a feedback regulation of 
hierarchical systems is evidently the existence of nonlinearity in the dynamics 
of  the system. In fact, when q -- 0, i.e., when the system is linear, the evolution 
of the order parameter  X(t) is determined only by X(t), as shown in (71). The 
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corresponding steady state at X = 0 is unstable, provided that p > 0. How- 
ever, the variance given by (69) is constant and independent of X regardless of 
the sign ofp.  In other words, even if the order parameter evolves, the fluctua- 
tion ~:(t) is not controlled by X(t), because of the lack of a feedback loop in 
the linear system. It is immediately clear from this fact that the pull-together 
effect of ~(t) occurs only in nonlinear systems through the dynamical coupling. 

In the model discussed in Section 5 the kinetic coefficient for a given 
value of X(t) becomes larger and larger as order develops in the system. This 
phenomenon may be generalized for the self-organizing system as discussed 
by Shimizu(l~: The effective potential for microscopic variables grows during 
the evolution of the order parameter and the deviation from the organizing 
motion is pulled back stronger and stronger by the effective potential. 

The kinetic coefficient in Section 5 is of a second-order perturbation 
approximation. As is shown by Kawasaki, (13~ one possible way to avoid the 
perturbation calculation is to find a closed form for C~ in (37) by simply 
assuming that the time-evolution operator exp{(1 - POAts} in Ct(s) can be 
replaced by exp(Ats) and the resulting many-body correlations of ~~ by the 
products of C~ 

A dynamical coupling between the time-dependent average of stochastic 
quantities and the fluctuations also was studied by Nordholm and Zwanzig. (14~ 
They have shown how the fluctuation renormalization can be obtained 
exactly by a formal procedure and approximately by more tractable methods. 
However, no explicit dependence of the variance on x is considered in their 
theory. 

The ensemble average discussed in Section 2 cannot always be calculated 
for nonphysical phenomena. For example, in the statistical development of a 
human society only one sample is available and it might seem insufficient to 
discuss the probability distribution for such a system. Nevertheless, the 
present theory may be applied to such a system if the number of members of 
the system is sufficiently large, for the reason discussed by Weidlich (3~ in his 
interesting study of the mass-opinion-forming process in a human society; 
namely, the probability distribution is sharply enough peaked with respect to 
the relevant variables that the possible deviations from their mean values are 
very small in every sample. 

7. C O N C L U S I O N  

The statistical distribution of  nonlinear stochastic variables, the "micro-  
scopic" variables a(t) = {a~(t)}, varies with time as the self-organization of 
order advances at the "macroscopic" level in the system of the variables. The 
process of  order formation in such a stochastic system is conveniently dis- 
cussed in terms of  the hierarchical structure of the system as long as the 
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number of variables is large enough and the state of the system is not very 
close to a critical one: The whole system is decomposed into a supersystem of 
"macroscopic"  size and subsystems of "microscopic"  size. The time evolu- 
tion of these hierarchical systems is controlled by dynamical feedback loops. 
More concretely, the "macroscopic"  variable or the order parameter x( t )  
characterizes the order formed in the system at the macroscopic level and 
therefore, belongs to the supersystem. The fluctuations of the variables around 
the ordered evolution x(t) ,  e.g., ~:(t) = a(t)  - x( t) ,  characterize the local 
behavior of the subsystems. Therefore, they are regarded as microscopic 
quantities. From a nonlinear Langevin equation for a(t)  a set of equations for 
x( t )  and ~:(t) is obtained. The "determinist ic" equations for x( t )  depend on 
~(t) through the variance of ((t) under the Gaussian approximation for 
~(t), and the "kinetic coefficient" or the "effective potential" for r in the 
stochastic equations of the subsystems is an increasing function of Ix(t)l. 
Thus, these two kinds of equations should be solved in a self-consistent way. 
Qualitatively, the evolution of ~:(t) for a short time can be decomposed into 
relaxation toward local equilibrium for a "f ixed" value of order parameter 
and dynamical coupling with the motion of the order parameter through a 
feedback loop. Indirect interaction between the evolutions of different sub- 
systems comes through dynamical coupling, and a pull-together phenomenon 
of the evolutions occurs, which leads to the self-organization of order. Mori 
and Fujisaka's renormalization theory for nonlinear stochastic variables is 
conveniently used for quantitative calculation of the time dependence of the 
variance and the correlation function of ~(t). The self-organization of order 
by the pull-together phenomenon is represented in terms of a reduction of the 
variance and an increase in the kinetic coefficient for r by dynamical 
coupling. The feedback loop exists in hierarchical systems only when non- 
linearity is present in the dynamics of the variables a(t). The condition for 
pull-together of  random motion is found from the evolution criterion for 
x(t) ,  and the criterion is determined not on ly  by x( t )  but also by ~:(t). 
Qualitatively, the condition is the existence of symmetry-breaking instability 
in stochastic systems. 
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